Sunday, December 28, 2014

MATHEMATICAL BELATED HOLIDAY GREETING



Given                                                                          2 m r [i cos r2 – sin r2] = dx/dr

Separate variables                                                      2 m r dr [i cos r2 – sin r2] = dx

Divide both sides by m                                                2 r dr [i cos r2 – sin r2] = dx/m

Express each side as an integral                                 ∫ 2 r dr [i cos r2 – sin r2] = ∫ dx/m

Integrate                                                                     cos r2 + i sin r2 + c1 = x/m + c2

Subtract c2  from both sides                                        cos r2 + i sin r2 + c1 – c2= x/m

c1 – c2 = c2 for some c                                                 cos r2 + i sin r2 + c2 = x/m

Multiply both sides by m                                             m [cos r2 + i sin r2] + m c2= x

E = m c2                                                                       m [cos r2 + i sin r2] + E = x

Subtract E from both sides                                         m [cos r2 + i sin r2] = x – E

De Moivre’s rule:  exp (ø i) = cos ø + i sin ø               m exp (r2 i) = x – E

(work) = force . distance                                         m exp (r2 i) = x – F.s

(force) = mass times acceleration                           m exp (r2 i) = x – mas

r2 = rr                                                                           m exp (rri) = x – mas

exp (a) = ea                                                                  m erri = x – mas


(Apparently originated with Brett Stevens, “Seasonal Greeting,” in the New Scientist, 21-28 December 1991)

No comments:

Post a Comment